OPTICALLY ACTIVE PHOSPHINE OXIDES. 5.¹ P-CHIRAL 2-AMINOETHYL PHOSPHINE OXIDES

K.Michał Pietrusiewicz* and Maria Zabłocka

The Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Boczna 5, 90-362 Łódź, Poland

Abstract: Homochiral 2-aminoethyl phosphine oxides are expeditiously prepared by thermal addition of primary and secondary amines to (-)-(S)-methylphenylvinylphosphine oxide. Their transformation into optically active 2-aminoethyl phosphines and 2-aminoethyl phosphine sulphides is exemplified.

In the preceding communication we described the use of (-)-(S)-methylphenylvinylphosphine oxide 1² as a convenient source of a variety of symmetrical and non-symmetrical homochiral 1,2-diphosphinoylethanes.¹ We now report the equally successful use of 1 in the synthesis of optically active (P-chiral) 2-aminoethyl phosphine oxides. The importance of optically active amino phosphorus compounds is well recognized.³

$$Me \xrightarrow{P^{*}}_{Ph} + H-N \stackrel{R}{\underset{R^{*}}{\longrightarrow}} \xrightarrow{\Delta} \stackrel{O}{\underset{Ph}{\longrightarrow}} \stackrel{N}{\underset{R^{*}}{\longrightarrow}} \stackrel{N}{\underset{Ph}{\longrightarrow}} \stackrel{R}{\underset{R^{*}}{\longrightarrow}}$$
(1)

As delineated in eq. 1, the synthesis consisted of a simple addition of primary and secondary amines to 1 and was conveniently carried out under thermal conditions in all studied cases.⁴ Two-step chemical correlation (-)-2a — (-)-1 (1 - CH₃I; 2 - K₂CO₃/H₂O) provided the material of exactly the same specific rotation as the starting 1, i.e., $[\alpha]_{D} = -80^{\circ}$ (CHCl₃), and inferred therefore that the synthesized (2-aminoethyl)methylphenylphosphine oxides 2a-k should be considered as virtually optically pure. Also, addition of Me₂NH and PhCH₂NH₂ to a homochiral (-)-(S_p)--(menthoxycarbonylmethyl)phenylvinylphisphine oxide⁶ furnished optically active 3 and 4, respectively, without any detectable epimerization at P.⁷

$$Men*OC \xrightarrow{P}_{Ph} (\alpha) = -44.7^{\circ}(CHCl_{3}) = -29.2^{\circ}(CHCl_{3}) = -13.6^{\circ}(CHCl_{3})$$

Exemplary reduction of 2a with PhSiH₃ gave the useful⁸ P-chiral (2-dimethylaminoethyl)methylphenylphosphine (bp. 55°C/0.1 Torr; ³¹P NMR (CHCl₃) δ : -38.6 ppm) which, in turn, upon treatment with S₈ yielded novel optically active sulphide 5.9 Since both the reduction¹⁰ and the addition of sulphur¹¹ are known to proceed with retention of configuration at P, the S configuration is assigned to (-)-5. The utility and chemistry of compounds 1-5 is under active investigation.

Table. Synthesis of optically active (2-aminoethyl)methylphenylphosphine oxides 2.a,/

~	R	R'	Isolated ^b Yield [%]	Bp ^C [^O C/Torr]	Mp ^d [°C]	[a] ^e [deg]	³¹ р NMR ^e δ [ррш]
2a	Ме	Me	92	150/0.1	72-4	-24.7	36.9
2Ъ	Et	Et	84	170/0.1	f	-24.2	36.5
~~ 2c ~~	-CH2CH2OCH2	сн	80	195/0.1	f	-10.5	32.6 ^g
~~ 2d	222 С-Нех	Me	68	220/0.1	f	-15.0	30.5 ^h
2e	Ph	Me	70	250/0.1	f	+55.4	34.2 ^g
2f	Me, NCH, CH,	Me	91	220/0.1	f	-15.2	36.7
~~ 2g	2 2 2 Et	н	89	250/0.1	110-2	-29.2	36.2
2h	PhCH ₂ -	н	72	i	88-9	-20.5	36.2
2i	H ₂ NCH ₂ CH ₂ -	н	84	210/0.1	f	-30.0	35.7
~ 2j	2 2 2 D-Ph(Me)CH-	н	68	i.	76-7	+27.3	36.6
~5 2k ≁	L-Ph(Me)CH-	Н	78	i	f	-56.1	36.1

^a All of the oxides 2 are of the S_p configuration. ^b Yields given are of the distilled or crystallized material. ^c From Kugelrohr distillation; oven temperature given. ^d Uncorrected. ^e In CHCl₃. ^f An oil. ^g In toluene. ^h In THF. ⁱ Distillation not attempted.

Acknowledgement: We thank the Polish Academy of Sciences for Grant CPBP-01.13 and Professor Jan Michalski for his kind interest in this work.

REFERENCES AND NOTES

- 1. Pietrusiewicz, K.M.; Zabłocka, M. Tetrahedron Lett. preceding paper in this issue.
- 2. Pietrusiewicz, K.M.; Zabłocka, M.; Monkiewicz, J. J.Org. Chem. 1984, 49, 1522.
- Hayashi, T.; Kumada, M. in Asymmetric Synthesis, Morrison, J.D., Ed., Academic Press, New York 1985, vol. 5, chapter 5. Horner, L.; Schlotthauer, B. Phosphorus Sulfur 1978, 4, 155. Nagel, U.; Kinzel, E. Chem.Ber. 1986, 119, 1731.
- 4. Even weakly basic primary amines or N-methylaniline added to 1 without catalyst⁴ although elevation of the reaction temperature up to 110°C was sometimes necessary (entries 2c-e,h,i,k). Typically the reactions were run in an excess of amine as solvent (or amine/toluene mixture when heating was applied) and they required 6-48 h for completion (³¹P NMR monitoring). Subsequent evaporation of the excess of amine and the solvent led to the product which was finally purified by crystallization from benzene or petroleum ether or by distillation *in vacuo*.
- 5. Cf. Märkl, G.; Merkl, B. Tetrahedron Lett. 1981, 22, 4459.
- 6. Bodalski, R.; Rutkowska-Olma, E.; Pietrusiewicz, K.M. Tetrahedron 1980, 36, 2353.
- 7. All the compounds were adequately characterized by MS, ^{1}H NMR and ^{31}p NMR.
- Hayashi, T.; Fukushima, M.; Konishi, M.; Kumada, M. Tetrahedron Lett. 1980, 21, 79. Horner, L.; Dickerhof, K. Phosphorus Sulfur 1983, 15, 331.
- 9. Synthesis of 5 from 1 by the sequence: PhSiH₃ reduction, addition of S₈ and addition of Me₂NH proved considerably less efficient.
- 10. Marsi, K.L. J. Org. Chem. 1974, 39, 265.
- 11. Horner, L.; Winkler, H. Tetrahedron Lett. 1964, 175. McEwen, W.E. Top. Phosphorus Chem. 1965, 2,1.

(Received in UK 28 January 1988)